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An iterative scheme for the 2D ANNNI model 
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Abstract. The 2D A N N N I  model is studied using a new iterative method, the method of 
ring recurrence. We show that the method produces an iterative scheme which enables 
the phase diagram and behaviour of the wavevector to be obtained using low-order matrices, 
with minimal computational effort. We find a one-dimensional attractor associated with 
the incommensurate phase. 

1. Introduction 

The axial next-nearest-neighbour Ising ( A N N N I )  model (Elliot 1961) is one of the 
simplest statistical mechanical models to show complex modulated phases. The two- 
dimensional model is defined in figure 1, where nearest-neighbour couplings are labelled 

Figure 1. The ZD A N N N I  model. J and J ,  are ferromagnetic nearest-neighbour couplings; 
J ,  is the antiferromagnetic second-neighbour coupling. 

J and J ,  along the z and x axes, respectively, and the second-neighbour coupling 
along the z axis is labelled J 2 .  In this study we shall take J ,  = J although the method 
can easily be extended to include the anisotropic case. The model has been extensively 
studied in both two and three dimensions. In two dimensions both Monte Carlo 
computer simulations (Selke and Fisher 1980) and analytic studies (Villain and Bak 
1981) show the presence of ferromagnetic, paramagnetic, incommensurate and + + - - 
t Present address: Department of Mathematics, Imperial College of Science and Technology, London 
SW7 2BZ, UK. 
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(or (2)) phases on varying the temperature and the ratio J J J .  The ( 2 )  phase consists 
of a regular pattern of two rows of ‘up’ spins followed by two rows of ‘down’ spins 
along the z direction in the lattice. Early Monte Carlo calculations (Selke and Fisher 
1980) have predicted a multicritical point at non-zero temperature, but the phase 
diagram is now generally believed to be similar to that obtained by Villain and Bak 
(1981). Recently transfer matrix scaling techniques have been applied to the problem 
(Beale et a1 1985). The phase diagram obtained is consistent with the result of Villain 
and Bak (1981). 

In this paper we present numerical results for the ZD spin-; A N N N I  model. We use 
a new iterative method, the method of ring recurrence (McKenzie 1986). The method 
is quite general and allows the critical properties of a system with a classical Hamiltonian 
to be studied in terms of effective fields or partial partition functions which are defined 
recursively. The existence of a phase transition is related to the stability of the fixed 
point of the iteration. For Bethe graphs for which the method is trivially exact, we 
have studied the Ising model with competing interactions (Saqi and McKenzie 1986a) 
and the random bond Ising model (McKenzie and Saqi 1986). In two dimensions, 
the method produces a matrix recursion. An approximation must be introduced to 
obtain a finite iterative scheme. This approximation is entirely equivalent to the familiar 
device used in renormalisation group methods of thinning out the number of degrees 
of freedom at each iteration, while retaining the dominant terms. The application of 
the method of ring recurrence to the ANNNI model enables the use of only low-order 
matrices and allows a direct calculation of the wavevector in the incommensurate phase. 

In the next section we briefly outline the method of ring recurrence and describe 
its application to the ZD A N N N I  model. In $ 3 we present the phase diagram that we 
obtain and in $ 4  we study the incommensurate phase in more detail. Finally, we give 
a few concluding remarks. 

2. The iterative method 

We give here a brief outline of the method of ring recurrence (McKenzie 1986) and 
its application to the A N N N I  model. 

The model is formulated as a discrete physical system (G, a, U )  (McKenzie 1981), 
where G is a graph with vertex set V(G), edge set E ( G )  and graph metric d ( x , y ) ,  
x, y E V (  G),  ip is the state space and U is the potential. In this study G is the square 
lattice, ip =I’IxcV(G) &, 4x = (1, -1) and U is given by 

where A = { x ,  y :  x,  y E V(G), d, (x ,  y )  = 2 )  where d, is the metric in the z direction. 

figure 2 )  
We divide the graph into rings X g  relative to some origin (Y E V(G) so tiiat (see 

X : = { x :  X E  V(G), d ( x , a ) = s ,  s=O, 1,2, .  I .}. 

Clearly Us=,, X y  = V (  G) and X y  A Xp = 4. 
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Figure 2. The 'wedge': a is the origin and rings are labelled as shown. 

Let R ,  = nYEX? 4Y and consider J ( w l ,  U , ,  w k ,  w I )  where w,  E R, ,  U, E R,,, , wk E a,+,, 
w I  E RZct3 .  We define 

E s + 2  = {[x, yl;  x, Y E X + Z ;  d ( x ,  Y )  = 11 

EFTZ,F+3 = {[x, Yl; x E xs+z, Y E x,+,; d ( x ,  Y )  = 1) 

4 s + 2  = {[x, Y l ;  x E xs, Y E x s + 2 ;  dAx, Y )  = 21 

with similar expressions for the other terms, d, being the metric in the z direction. 

can be written as 
In terms of J, the partition function of a finite graph G,, for which V (  G,) = ucpo X , ,  

We define normalised effective fields psi ,  (U,, U,+ recursively by 

Y S + l C L S + I ( ~ S ,  W S + l )  = c exp(J(w,, ws+1 t % + 2 ,  ws+3))p,+3(w,+2, 0,+3) (2.1) 

where y is a suitable norm. The ps+l is a partial partition function which gives the 
contribution to 2 from that portion of the graph located further than s + 1 rings from 
the origin a. 
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We compare (2.1) with the corresponding expression for the simple Ising model 
with nearest-neighbour interactions only, namely 

We now particularise the general treatment given so far to the square lattice. It is 
easiest to develop the formalism for the graph shown in figure 2. In  the thermodynamic 
limit the effects of the edges become negligible compared with the bulk terms. Our 
development concentrates on the bulk terms which is clearly equivalent to studying 
the square lattice. 

The effective fields p,+’ for this graph can be expressed as a product of matrices. 
Thus 

The first subscript on the spin variables U labels the ring and the second subscript 
labels the position of a spin along a ring. 

Similarly, py .  I is given by 

P Y - I ( W Y - 2 ,  U s - ’ )  = Kc-l((+r-Z.I 7 a T - 1 , ’ )  n &‘((+,-,,I,  ur--I,,)1. (2.3) 

There is a matrix recursion between the A,+l  and the Ay-’.  The K matrices are edge 
terms and are later neglected. 

For the spin-; Ising model with nearest-neighbour interactions, the matrix recursion 
is (McKenzie 1986) 

x ( a )  e’A,(l) x- ’ (a)  e-’AT(-l) 
x ( a )  e-’As(l) x - ’ ( a )  eJAs(-l) Ys-IAs-l(~) = (2.4) 

where x( a )  = exp( H + aJ), x-’( a) = exp( -H - aJ) and y is a norm. 
Up to this stage the formalism is exact. To obtain a recurrence scheme the matrix 

recursion is reduced to a recursion between scalars. The matrices As (aT ,8 )  are 
diagonalised and contributions to the product n Ay(as , , )  involving only the largest 
eigenvalues are retained. 

The matrix recursion (2.4) for the simple spin-f Ising model becomes, in this 
approximation, 

where p =Al ( - l ) /A l ( l )  and A , ( a )  is the largest eigenvalue of the matrix A(u ) ;  
a l l ( a l ,  a,) is the ( 1 , l )  element of the matrix product T-’ (a l )T(a l+l ) ,  where T-’AT = 
A, the matrix of eigenvalues, y is a suitable norm. 

The recursion relation (2.5) is studied numerically by computing the matrices A ( a )  
and their eigenvalues and  eigenvectors for arbitrary initial values of A I (  a )  and 
u, , (a , ,  a,+’). The critical point T, is obtained from the behaviour of the fixed point 
p* .  For T >  T,, p * =  1, whilst for T <  T,, p* = 1 becomes unstable and the solution 
bifurcates at T = T,. 

For the A N N N I  model the inclusion of the axial second-nearest-neighbour coupling 
groups the spins into pairs and  forces us to consider the problem as a four-state model. 
A pair of spins (a,,,, as+l,l) can be in one of the four possible states, namely ++, + -, 
- +, - - and similarly for the adjacent pair (as,,+l, as+l.l+l). We label the four states 
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by T which takes values 1 ,2 ,3 ,4 .  We define 

b,, = = m, T,+,  = n )  m, n = 1 , 2 , 3 , 4  

where a , ,  is the leading diagonal element of T - ’ ( T , ) T ( T , + ~ )  where T- ’AT= A.  

(refer to figure 3). 
Here T ,  refers to the pair of spins ( u ~ + , , ~ ,  ay,j) and T,+, refers to (aT+l, ,+l,  as,,+l) 

I I 

Figure 3. Refer to text. 

Following the method of ring recurrence (McKenzie 1986) we reduce the matrix 
recursion defined by (2.2) and (2.3) to a recursion between scalars. The matrix recursion 
is 

Y s  - 1 A, -1 (a,, a, ) 

tlA,+l(l,  1) e’ tZAm+l(l, -1) e’ f3As+l(-lr  1) e-3J t4As+l(-l, -1) e’ 
t lA,+,( l ,  1) e’ t2A,+I(1, -1) e-,’ t3Ar+,(-l ,  1) e’ f4A7+l(-l ,  -1) e’ 

t lAS+l( l ,  1) e,’ t2Ar+l( l ,  -1) e-’ ?3As+l(-l, 1) e-’ t4Ar+l(-l,  -1) e 

=( t lA,+,(l ,  1) e’ t2As+,(l ,  -1) e-’ t3As+,(-l,  1) e-’ r4Ar+,(-lr -1) e,’ -’I 

1. 

where U, E Cl,, a] E Cl,+, and 

t , (  a,, a,) = exp[ 2 H  + a, ( J2 + J )  + a,J2] 

Uu,,  a,) =expEa,(J2-J)-qJ2I 

f 3  ( at, a, = exp[ a, ( J - J 2 )  + a,J2 1 
r4( a,, cl) = exp[ -2H - a, ( J2 + J )  - a,J2]. 

We obtain 

Ys+ 1 A, + 1 ( a, 9 a, 1 
f ,  e3’A,(l, l ) b l l  t2 e-’A,(l, - l )b12 t3 e-’A,(-l, l )b13  t4e-’A,(-l, - l)b14 
t l  eJAl(l, l )b2,  r2 e’Al(l, -1)b2> t, e-,’A1(-1, l)b2, f4e’A,(-l, -l)b24 
t l  e’Al(l, l)b31 t 2  eC3’Al(l, - l)b32 t3 eJAl(-l, l)b33 t4e’A,(-1, - l)b34 =i t l  eJAl(l, l)b41 tze-’Al(l, - l)b42 t, e-’Al(-l, l)b43 f4e3’Al(-1, - l)b44 

We normalise A,+1 by letting yS+, = A\’+’’(l). 
We now have a recursion relation between scalar quantities. We shall examine the 

behaviour of the eigenvalues of A upon iteration. Each eigenvalue is associated with 
one of the four combinations of a pair of spins (a,, a,). The terms b,, represent the 
weight attached to transforming the configuration of a given spin pair n into the 
configuration m of the adjacent spin pair under the operation of the matrix A.  
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3. The phase diagram 

The various phases are characterised by the behaviour of the eigenvalues on iteration. 
We obtain four distinct phases. 

(a) A paramagnetic phase where the eigenvalues iterate to fixed points A * ,  such that 

AT(1) = AT(4) and AT(2) = A T ( 3 ) .  

We find that at the fixed point 

b,, = b,.,, 

if we write m‘ as the complementary state to m, so that T (  m ’ )  = 7(-ai - uj), when 
T ( m )  = 7(ai, uj). This is the expected behaviour since in the paramagnetic phase it is 
equally likely for a given spin to be up  or down. Thus, in this phase, the matrix A 
becomes symmetrical. The appearance of ferromagnetism is therefore a consequence 
of symmetry breaking. 

(b)  The ferromagnetic phase: here the fixed points are such that 

A T ( 1 )  f AT(2) # AT(3) # AY(4). 

On iteration the b,, converge to fixed points such that 

613 = bl4 = 623 = 624 = 0 

b31= b32 = b4, = b42 = 0. 

In other words, the b,, in the diagonal (2 x 2) blocks converge to zero. 
(c) The + + - - or (2) phase: the eigenvalues A T (  T )  iterate to a 2-cycle. There are 

two stable fixed points between which the system alternates in a stable cycle of period 
two. Each step in the iteration takes into account two rows (or rings) of the lattice. 
In terms of the actual lattice, the 2-cycle observed is a + + - - phase with two rows 
having ‘up’ spins and two rows having ‘down’ spins in a regular manner. In this phase 
we find the b,, iterate to fixed points, b,, = 0, m # n. For m = n, b,, = 1. This 
behaviour of the b,, is consistent with a + + - - structure. For such a structure we 
would not expect a change of sign going along a row and  hence the expected weights 
of such configurations would be zero. 

(d )  Finally we observe regions where the eigenvalues d o  not converge but take on 
an  oscillatory chaotic-like behaviour. This characterises the incommensurate phase. 
In this region we detect no regular behaviour of the b,,. 

The phase diagram is shown in figure 4. We note the phase boundary between the 
incommensurate and paramagnetic phases moves slightly to the left of the line - J 2 /  J = 
0.5, before returning to -Jz/  J = 0.5 as T decreases. This effect, though small, is certainly 
present. Detailed numerical studies show there is no multicritical point at a non-zero 
temperature where the three phases-ferromagnetic, paramagnetic and  incommensur- 
ate-meet. The paramagnetic phase extends down to T = 0 (figure 5). Apart from this 
our phase diagram is similar to that obtained by Villain and Bak (1981) and Beale et 
a1 (1985). 

In figure 6 we compare our numerical results for the paramagnetic-ferromagnetic 
phase boundary with the curve predicted by Hornreich et a1 (1979), who determine 
T, by the vanishing of an interface free energy. 



An iterative scheme for the 20 A N N N I  model 471 

1 ( 2 )  
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L.- L #1 
0 0 20 0 40 0 60 0 80 

- J ,  i J  

Figure 4. Phase diagram for spin-4 2D A N N N I  model. (P)=paramagnetic, ( F ) =  
ferromagnetic, ( I )  = incommensurate, (2) = + + - - phase. 
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Figure 5. Detailed study of the phase diagram close to - J J J  = 0.5. 
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Figure 6. Ferromagnetic-paramagnetic phase boundary: the points are our numerical 
results; the curve is from Homreich er al (1979). 
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4. The incommensurate phase 

We now study further the incommensurate phase. Our iterative scheme enables us to 
obtain a direct estimate of the wavevector. Each iteration corresponds to moving 
spatially through two rings of the lattice and the fixed point describes the bulk behaviour. 

Following Vannimenus (1981) we define two order parameters: 

771 = [ ~ 1 ( 1 ) - ~ 1 ( 4 ) 1 / [ ~ 1 ( 1 ) + ~ 1 ( 4 ) 1  

772= [h1(2) - A i ( 3 ) I / [ A i ( l )  -I- Ai(4)I. 

Clearly vl ,  772 converge to zero in the paramagnetic phase and to non-zero fixed points 
in the ferromagnetic phase. We define the wavevector by 

q = lim n ( N ) / 4 N  (4.1) 
N - a ,  

where n(  N )  is the number of times the order parameter changes sign in N iterations. 
We have divided by 4 due to the fact that on each iteration we move through two 
rings of the lattice. 

Figure 7 shows a plot of 771 against 772 at a typical point in the incommensurate 
phase ( J - '  = k T / j  = 1.4, - J 2 / J  = 0.7). We observe that this phase is characterised by 
the existence of a one-dimensional attractor. The corresponding power spectrum is 
shown in figure 8. 

0 0 0 4  0 0 8  

Q, 

-012L , ' ' ' ' ' ' ' ' ' 
-008 -004 

Figure 7. Attractor in ( I )  phase ( J - ' =  1.4, - J 2 / J = 0 . 7 ) .  

2.00. I 
0 

a 

-2 00. 

-4 00. 

0 010 0.20 0.30 0.40 0 59 
Frequency 

Figure 8. Power spectrum corresponding to figure 7 .  
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2 1 0  

The variation of the wavevector, q, with temperature for two values of competing 
interaction strength - J 2 /  J = 0.7, - J 2 /  J = 0.9 is given in figures 9 and 10. The definition 
(4.1), whilst very convenient for numerical purposes, requires a large number of 
iterations, N. For Bethe graph models (Saqi and McKenzie 1986a) the recursive 
scheme yields a simple set of coupled non-linear equations, and it is easy to take N 
to be the order of 10000. In the present case, however, due to CPU time limitations 
we have taken N = 650 in obtaining the results shown in figures 9 and 10. There is 
evidence of frequency locking in the figures. More detailed calculations suggest that 
frequency locking is a persistent feature of the behaviour of this model in the incom- 
mensurate phase. 

1 J 

x lo - ’  

D 

L 0 + U 

W 
1 W 

4 

2 OCI , 

130 1 40 150 1.60 
k T l J  

Figure 9. Variation of wavevector with temperature ( - J J J  = 0.7). 

Figure 10. Variation of wavevector with temperature ( - J , / J  = 0.9). 

5. Conclusions 

We have studied the ZD A N N N I  model using a new iterative method, the method of 
ring recurrence ( McKenzie 1986). Within the approximation of the two-dimensional 
formulation we are able to obtain rather accurate estimates of the phase boundaries 
or critical frontiers. The phase diagram is in general agreement with other results 
(Villain and Bak 1981, Beale et a1 1985). We note however the existence of the 
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incommensurate phase for - J 2 / J < 0 . 5 .  There is no evidence for the existence of a 
multicritical point on the ferromagnetic phase boundary, at the position predicted by 
Selke and Fisher (1980). Rather, from the evidence of figures 4 and 5 ,  we suggest that 
the paramagnetic phase reaches T = 0. We have found that the incommensurate phase 
is associated with a one-dimensional attractor as in the case of incommensurate phases 
on Bethe lattice models with competing second-neighbour interactions (Inawashiro et 
al 1983). Our formulation allows us to obtain a direct estimate of the wavevector, q, 
which is convenient for numerical purposes. The variation of q with temperature 
points strongly to frequency locking over small temperature intervals. Our feeling is 
that frequency locking is a real effect of the model, as in Bethe lattice models, and is 
not caused by the finite number of iterations or the approximation made in the 
formulation of the method. The peaks and dips in the power spectrum show that the 
model predicts that the diffuse scattering from the incommensurate phase is not uniform. 

We have explored the possibility of finding the disorder line (Stephenson 1970) 
but have not pursued this in depth. Preliminary studies show that the disorder line 
can be determined by the mode by which the order parameter converges to zero in 
the paramagnetic phase: to the left of the disorder line convergence is monotonic, to 
the right it is oscillatory. I t  is straightforward to test for this behaviour numerically 
and hence to obtain an indication of the position of the disorder line. 

We have been somewhat surprised by how easily the method can be implemented 
on this fairly complex model and the accuracy with which the phase boundaries can 
be obtained with very modest expenditure of computer time. Finally, we observe that 
the method is easily generalised to higher spins. The spin-1 A N N N I  model involves 
matrices of order nine and determination of the phase diagram is relatively straightfor- 
ward (Saqi and McKenzie 1986b). 
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